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Abstract. Delivered sky brightness and atmospheric seeing are two important factors
in the optimal scheduling of observations in large observing programs, but are less well
studied than spherical astronomy. In the Dark Energy Survey (DES), planning software
needs to optimize over the requirements of each of its science programs. For example,
observing cadence is the primary factor in supernova detection, whereas seeing is the
most important factor in weak lensing measurements. Delivered sky brightness is an
important factor in filter and field selection for all programs. I describe models for
the short timescale (5 minute) evolution of seeing and delivered sky brightness, and
parametrize and test these models using data from CTIO and Apache Point Observatory.

1. DES Exposure Scheduling

The Dark Energy Survey (DES) will study dark energy using four complementary tech-
niques: type Ia supernovae (SN), baryon acoustic oscillations (BAO), galaxy clusters
(GC), and weak gravitational lensing (WL). The DES observing program consists of
two surveys: a narrow survey used to collect SN light-curves, and a wide-field survey
used by the other techniques. The two surveys have different observing constraints:
the fields in the narrow survey must be observed according to a regular observing ca-
dence, while the weak lensing science is more sensitive to seeing. All programs need
to avoid fields with high background surface brightness. Optimal execution of the pro-
gram therefore depends on scheduling exposures based on current conditions.

SISPI, the DES data acquisition and control system, will execute DES science
program by following an observing queue. The queue is a list of exposures that can be
viewed and edited both by the observatory staff and the Observation Tactics program,
ObsTac. During observing, ObsTac monitors the length of the observing queue and,
when the length fall below a configurable duration, adds new observations to the queue
according to the survey footprint and global strategy, the estimated quality of completed
exposures, the current contents of the queue, the positions of needed fields on the sky,
and estimates of the weather conditions (seeing, cloudiness, and sky brightness) at the
extrapolated time of observation.

ObsTac therefore relies on models to predict the seeing and sky brightness for
candidate observations. Furthermore, the simulations used to evaluate and optimize
the selection algorithms used by ObsTac require realistic simulation of seeing and sky
brightness to be effective.
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2. A Model for Sky Brightness

The luminosity of the night sky arises from several sources: airglow, scattered moon-
light, light pollution, unresolved astronomical sources, zodiacal light, gegenschein, and
polar aurorae. This model only includes explicit models of airglow (using the model
van Rhijn (1921)) of and scattered moonlight (using a combination of Rayleigh scatter-
ing and Mie scattering as approximated by the formula proposed by Cornette & Shanks
(1992)); it accounts for other sources with a constant background (fit to the dark sky
with the airglow) and a simple function of time of night, time of year, azimuth, and
airmass fit to the residuals after the subtraction of other sources.

The model parameters such as the airglow height were fit to data from the Sloan
Digital Sky Survey (SDSS) photometric telescope (PT), used to calibrate and monitor
sky conditions for the SDSS. The PT collected more than 20,000 sequences of 5 ex-
posures (one in each of the 5 SDSS filters) between 1999 and 2008, including many
with bright moonlight (Tucker et al. 2006). First, I fit the airglow height and luminos-
ity and constant background to exposures without moonlight. Then, I fit the Rayleigh
scattering of moonlight to exposures for which the angle between the moon and the ex-
posure’s pointing was between 40 and 100 degrees, where such scattering is expected
to dominate Mie. I then fit the Mie scattering parameters to the remaining flux. Finally,
I fit the residuals to a simple function of airmass, azimuth, time of day, and time of year
to accommodate other sources.

3. Autoregressive Time Series Analysis

Even after fits to obvious astronomical and positional parameters have been subtracted,
significant residuals remain. These residuals are strongly correlated in time, suggesting
that a good estimate of the offset from the model in the near future is the offset from the
model in the recent past. Such an estimate corresponds to a model in which the offset
from the model follows a random walk. While such a model is likely to be adequate
for prognostication, it cannot represent the underlying process, or be used to generate
realistic data for simulations, because in such a model the offset from the model will
grow linearly with time. An autoregressive model (Cryer & Kung-Sik 2010), in which
the offset at time t is the weighted mean of the global mean offset and some number of
previous time steps, overcomes this problem. For this model, the mean offset is zero
and a linear combination of the two previous time steps accounts for most temporal
correlation. In the r filter, for example, the best fit AR(2) model for the offsets is:

∆Dt = 0.70∆Dt−1 + 0.13∆Dt−2 + et

where et follows a normal distribution with variance 0.013, resulting in an uncertainty
of 0.11mag/asec2 when ∆Dt is estimated as 0.70∆Dt−1 + 0.13∆Dt−2. Over time, the
uncertainty relative to the global model tends to 0.17mag/asec2 rather than increasing
with time indefinitely. Figure 1 shows the overall effect of applying the AR(2) model.

4. Seeing Variability

An autoregressive time series analysis is also useful for modeling seeing variability.
Els et al. (2009) studied seeing data for CTIO, and found significant variation on yearly
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Figure 1. A comparison of the static and AR(2) modeled sky brightness on SDSS
PT r band data, resampled into 1 hour intervals.

model surface brightness

m
e
a
s
u
re

d
 s

u
rf

a
c
e
 b

ri
g
h
tn

e
s
s

17

18

19

20

21

22

17

18

19

20

21

22

17 18 19 20 21 22

s
ta

tic
 m

o
d

e
l

s
ta

tic
 +

 A
R

(2
) m

o
d

e
l

difference from model

c
o
u
n
t

0

100

200

300

400

500

0

100

200

300

400

500

−0.4 −0.2 0.0 0.2 0.4

s
ta

tic
 m

o
d

e
l

s
ta

tic
 +

 A
R

(2
) m

o
d

e
l

time scales. For shorter time scales, an autoregressive analysis on a series of seeing
values derived from mean DIMM measurements from the CTIO database, resampled
into 5 minute intervals, results in:

st = 0.48st−1day + 0.13st−10min + 0.80st−5min + et; st = f (fwhmt)

where f is a reversible monotonic function that transforms the skew-log-normal seeing
distribution to an approximate normal distribution, and et is normally distributed with
a standard deviation of 0.38. The value s = 0.0 corresponds to a PSF with FWHM =
0.76′′ and s = 0.38 corresponds to FWHM = 0.87′′, indicating variations of order
0.1′′ are introduced in each 5 minute time interval. Indeed, the differences between
predictions made with this model (st,pred = 0.48st−1day + 0.13st−10min + 0.80st−5min) and
measured values have a standard deviation of 0.13′′. The median absolute deviation is
only 0.06′′ and distribution has a high kurtosis of 17.7; small and large deviations are
significantly more common than would be predicted by a normal distribution. Figure 2
shows a comparison of the measured and predicted values.
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Figure 2. Comparisons of the AR model for seeing variation and DIMM values
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